Additional Mathematics SA2 Overall Revision Notes Chapters 1 – 2 ()

Simultaneous Equations, Indices, Surds, Logarithms

Chapter 1: Simultaneous Equations

There are 3 methods in solving simultaneous linear equations:

- 1.) Substitution Method
- 2.) Elimination Method
- 3.) Graphical Method

There are several steps to follow:

- 1.) Express one unknown in terms of another unknown (avoid fractional expressions)
- 2.) Substitute this newly formed equation into the non-linear equation
- 3.) Solve for the unknown
- 4.) Use the linear equation to find the other unknown.

Chapter 2.1: Surds

$$\sqrt{m} \times \sqrt{n} = \sqrt{mn}$$

$$\frac{\sqrt{m}}{\sqrt{n}} = \sqrt{\frac{m}{n}}$$

$$a\sqrt{m} + b\sqrt{m} = a + b\sqrt{m}$$

$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$$

$$a + b\sqrt{k} = c + d\sqrt{k}$$

$$a = c$$
 and $b = d$.

Rationalising Denominator:

Multiply the square root to

both numerator and denominator.

Chapter 2.2: Indices

$$a^m \times a^n = a^{m+n}$$

$$(a^m)^n = a^{mn}$$

$$a^m \times b^m = (ab)^m$$

$$a^m \div a^n = a^{m-n}$$

$$a^m \div b^m = \left(\frac{a}{b}\right)^m$$

$$a^{0} = 1$$

$$a^{-n} = \frac{1}{a^n}$$

$$x(a^{-n}) = \frac{x}{a^n}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$a^x = a^n$$

$$\therefore x = n$$

When a > 1

Chapter 2.3: Logarithms

No.	Rules of Logarithms (base a)	Rules of Common Logarithms	Rules of Natural Logarithms
1.	$x = \log_{a} y \iff y = a^{x}$ y > 0 (a > 0, a \neq 1)	$x = \lg y \Leftrightarrow y = 10^{x}$ y > 0 (base 10) $\lg y = \log_{10} y$	$x = \ln y \Leftrightarrow y = e^{x}$ $y > 0 \text{ (base e)}$ $\ln y = \log_{e} y$ $e = 2.71828$
2.	$\log_a a = 1$ $\log_a 1 = 0$ $a^{\log_a x} = x$	lg 10 = 1 lg 1 = 0 10lg x = x	$ \ln e = 1 \ln 1 = 0 e^{\ln x} = x $
3.	$\log_a xy = \log_a x + \log_a y$	$\lg xy = \lg x + \lg y$	$\ln xy = \ln x + \ln y$
4.	$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$	$\lg\left(\frac{x}{y}\right) = \lg x - \lg y$	$ \ln\left(\frac{x}{y}\right) = \ln x - \ln y $
5.	$\log_a x^n = n \log_a x$	$\lg x^n = n \lg x$	$\ln x^n = n \ln x$
	Antilogarithms: a*	10°	e ^x
6.	$\log_a p = \log_a q \Leftrightarrow p = q$	$\lg p = \lg q \Leftrightarrow p = q$	$\ln p = \ln q \Leftrightarrow p = q$
7.	Change of base $\log_a b = \frac{\log_e b}{\log_e a}$	$\log_a b = \frac{\lg b}{\lg a}$	$\log_a b = \frac{\ln b}{\ln a}$
8.	Reciprocal $\log_a b = \frac{1}{\log_b a}$	$\log_x 10 = \frac{1}{\log_{10} x} = \frac{1}{\lg x}$	$\log_x e = \frac{1}{\log_e x} = \frac{1}{\ln x}$

Additional Mathematics SA2 Overall Revision Notes Chapters 3 - 4

Quadratic Functions and Inequalities

Sum and Product of Roots

In $ax^2 + bx + c$

Sum of roots $\alpha + \beta = -\frac{b}{a}$

Product of roots $\alpha\beta = \frac{c}{a}$

We can use the sum and product of roots to write an equation.

$$x^2$$
 – (sum of roots) x + (product of roots) = 0

Intersection Terms

Crosses / Cuts	2 points of intersection, 2 real/distinct roots/	
	discriminant more than 0.	
Touches /	1 point of intersection, 2 real/equal roots/	
tangent	discriminant = 0.	
Does not	0 points of intersection, no real roots,	
intersect / meet	discriminant < 0.	
Meet	Discriminant more than or equal to 0.	

Quadratic Inequality

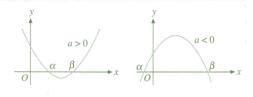
$$(x-a)(x-b) > 0, x < a \text{ or } x > b$$

$$(x-a)(x-b) \le 0, a \le x \le b$$

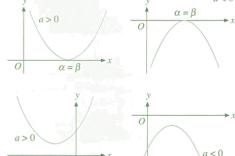
Discriminant and Nature of Roots

(a) $b^2 - 4ac > 0$ Two distinct real roots

 \Rightarrow two x-intercepts



- (b) $b^2 4ac = 0$ Equal real roots
 - \Rightarrow only one x-intercept and the x-axis is a tangent to the parabola
- (c) $b^2 4ac < 0$ No real roots
 - \Rightarrow no *x*-intercept and $y = ax^2 + bx + c$ is either always positive or always negative



Chapter 8: Linear Law

The graph of a linear equation Y = mX + c is a straight line with gradient m and y intercept c.

There are 2 parts to solving linear law questions: Draw a straight line graph to determine gradient and y-intercept, and to find the equation of the straight line.

Key Steps:

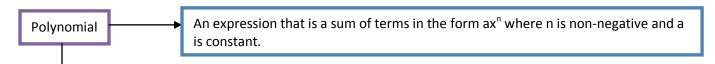
- 1.) Force the equation into the form of Y = mX + c.
- 2.) Take some experimental values of x and y and compute the corresponding values of X and Y.
- 3.) Use these computed values to plot the points on a graph with X and Y axis.
- 4.) Draw a line passing through the plotted points. Always have more space at the lower end of graph for the line to cut the Y axis for Y-intercept.
- 5.) Obtain the Gradient and the Y-intercept.

Note: In Y = mX + c

- (a): Y must not have any coefficient,
- (b): mX is part constant and part variable.
- (c): c must not contain any variable X and Y.

Additional Mathematics SA2 Overall Revision Notes Chapters 3 - 4

Polynomials/Partial Fractions _



To find unknown constants, either equate coefficients of like powers of x or substitute values of x.

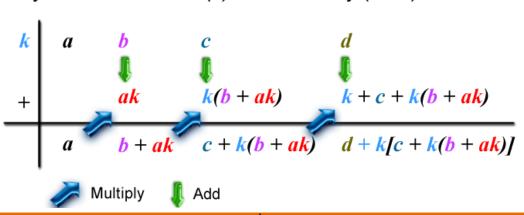
Remainder Theorem

If a polynomial f(x) is divided by a linear divisor (x - a), the remainder is f(a).

Factor Theorem

If (x - a) is a factor of the polynomial f(x), f(a) = 0.

Synthetic Method: f(x) is divided by (x - k)



Partial Fractions

g(x) has	Corresponding Partial Fraction(s)	
linear factor $ax + b$	$\frac{A}{ax+b}$	
repeated linear factor $(ax + b)^2$	$\frac{A}{ax+b} + \frac{B}{\left(ax+b\right)^2}$	
quadratic factor $x^2 + c^2$ (which cannot be factorised)	$\frac{Ax+B}{x^2+c^2}$	

Basically, a linear factor that cannot be factorised is to be remained in the same form. A repeated linear factor like $(ax+b)^2$ is to be split into 2: $\frac{A}{(ax+b)} + \frac{B}{(ax+b)^2}$.

Chapter 5: The Modulus Functions

For a real number x, |x| represents the modulus / absolute value of x. It is always nonnegative.

To draw a modulus graph of the function, first draw the function then reflect the part of the function which is below the x axis **upwards**.

Formulas:

$$|x| = k \Rightarrow x = k \text{ or } x = -k$$

$$|f(x)| = \pm g(x), \ g(x) \ge 0$$

$$|f(x)| = |g(x)|, \ f(x) = \pm g(x)$$

$$|ab| = |a||b|$$

$$|\frac{a}{b}| = \frac{|a|}{|b|}$$

Chapter 6: Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} \dots + b^{n}$$

$$(1+x)^{n} = 1 + \binom{n}{1} x + \binom{n}{2} x^{2} + \binom{n}{3} x^{3} + \dots + \binom{n}{n-1} x^{n-1} + x^{n}$$

$$\binom{n}{r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}$$

Properties:

- 1.) Have n+1 terms
- 2.) Sum of powers of a and b = n.

r+1th term: $T_{r+1} = \binom{n}{r} a^{n-r} b^r$ or $T_{r+1} = \binom{n}{r} b^r$

Chapter 7: Coordinate Geometry

Overview

Formulae for solving coordinate geometry questions. Let the points be (x_1, y_1) , (x_2, y_2) .

- (1) Distance between 2 points $=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
- (10) Ratio Theorem If P(x, y) divides AB in the ratio m:n, then $P = \left(\frac{mx_2 + nx_1}{mx_2 + nx_1}, \frac{my_2 + ny_1}{mx_2 + nx_2}\right)$
- (9) To prove for parallelogram, use midpoint formula

m+n

(8) Area of polygon Given $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ Area of AABC $= \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{vmatrix}$ $= \frac{1}{2} | (x_1 y_2 + x_2 y_3 + x_3 y_1)$ $-(x_2y_1 + x_3y_2 + x_1y_3)|$ Given $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3), D(x_4, y_4)$ Area of ABCD $= \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{vmatrix}$ $= \frac{1}{2} \left[(x_1 y_2 + x_2 y_3 + x_3 y_4 + x_4 y_1) \right]$ $-(x_2y_1+x_3y_2+x_4y_3+x_1y_4)$

- (2) Midpoint between 2 points
- Total Solution of a Coordinate
- Geometry Question

(7) To find Perpendicular Distance (Formula seldom used) Given a point (x, y) and equation Ax + By + C = 0Perpendicular Ax + By + CDistance $\sqrt{A^2 + B^2}$

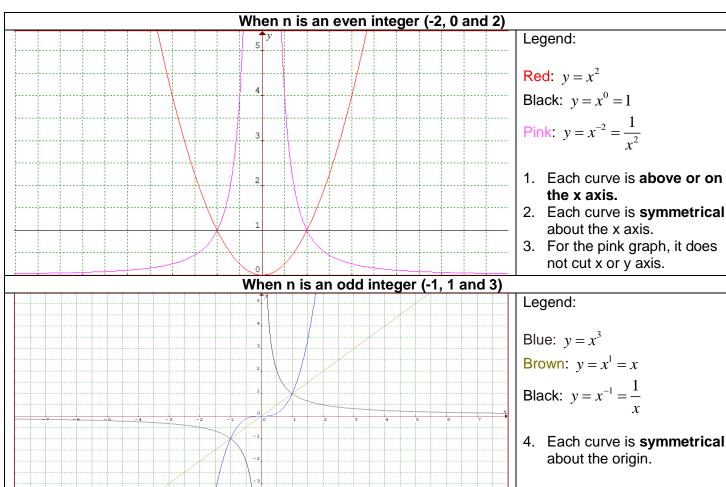
(3) Gradient of line joining 2 points = $\frac{y_2 - y_1}{x_2 - x_1}$

If parallel \Rightarrow gradient $m_1 = m_1$ If perpendicular ⇒ gradient $m_1 m_2 = -1$

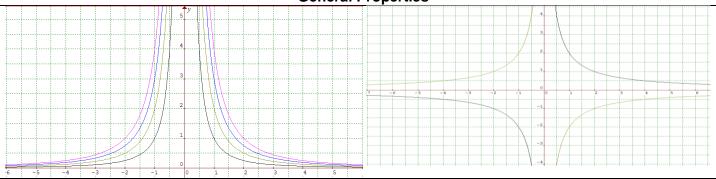
- (4) To prove that A, B and C are on same line (collinear) Gradient AB = Gradient ACGradient BC
- (5) Equation of a straight line
 - (a) y = mx + c
 - (b) $\frac{y-y_1}{y_1} = \frac{y_2-y_1}{y_2-y_1}$
 - (b) $\frac{1}{x-x_1} = \frac{1}{x_2-x_1}$ (c) $y-y_1 = m(x-x_1)$ where m = gradient, c = y-intercept
- (6) Equation of Perpendicular
 - Given $A(x_1, y_1), B(x_2, y_2)$
 - Step 1 Find midpoint of AB
 - Step 2 Find gradient of AB
 - Step 3 Find gradient of perpendicular line to AB
 - Step 4 Using (1), (3), obtain equation

Additional Mathematics Chapter 9 Curves and Circles (Summary)

Chapter 9.1: Graphs of $y = ax^n$



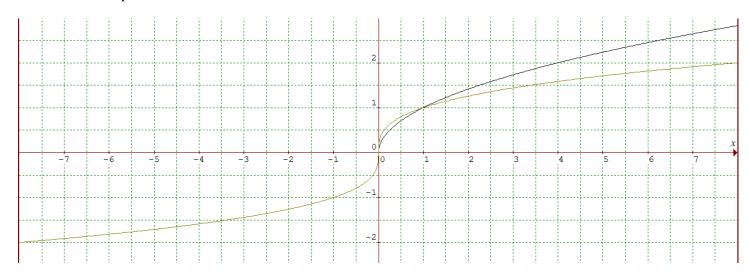
4. Each curve is symmetrical about the origin.



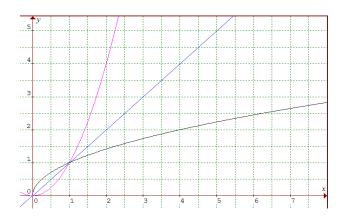
When a is constant, the graphs of $y = ax^n$ are similar except that they differ in the steepness as seen in the graphs of $y = x^{-2}$.

If a < 0, then the graph of $y = ax^n$ is a reflection of the graph of $y = |a| x^n$ in the x axis.

- Graphs of $y = ax^n$ where n is a simple rational number
- 2. For $y = \sqrt{x}$ or $y = x^{\frac{1}{2}}$, x will be more or equal to 0 (x cannot be less than 0). y is also more than 0 as square root is taken to be positive.



Legend: Black: $y = \sqrt{x}$. Brown: $y = \sqrt[3]{x}$.

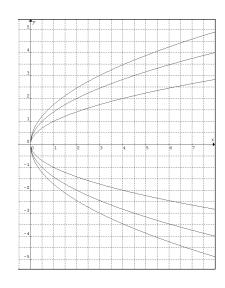


2. Comparing concavity of curves.

When $y=\sqrt{x}$, graph concaves downwards. When y=x, graph is straight and constant. When $y=x^2$, graph concaves upwards.

3 Graph of $y^2 = kx$

- 1. The graph of $y^2 = x$ is actually a 90 degree clockwise rotation of the graph of $y = x^2$ about the origin O.
- 2. In general, the graphs of $y^2 = kx$ have the same properties as that of $y^2 = x$ except that they differ in the steepness.
- 3. Each graph passes through (0, 0) and is symmetrical about the x axis.



4 Equations of Circles

Equation	$(x-a)^2 + (y-b)^2 = r^2$	$x^2 + y^2 + 2gx + 2fy + c = 0$
Center of circle	(a, b)	(-g, -f)
Radius	r	$\sqrt{g^2 + f^2 - c}$

5 Linear Law (Revision)

Always make an equation to Y = mX + c. (where m and c must be constant!)

Additional Mathematics Chapter 11 and 12

Trigonometry Functions, Simple Trigonometric Identities/Equations

Chapter 11.1: Angle in Radian Measure

$$180^{\circ} = \pi \, \text{rad}$$

$$1^{\circ} = \frac{\pi}{180}$$
 rad

$$1 \, \text{rad} = \frac{180}{\pi} \approx 57.3^{\circ}$$

Chapter 11.3: Trigonometric Ratios of Complimentary Angles

$$\sin(90^{\circ} - \theta) = \cos\theta$$

$$\cos(90^{\circ} - \theta) = \sin\theta$$

$$\tan(90^{\circ} - \theta) = \frac{1}{\tan \theta}$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan\theta}$$

S

Τ

Α

Chapter 11.2: Trigonometric Ratios for Acute Angles

Just remember that the surd form of these numbers:

$$\frac{\sqrt{3}}{3} \approx 0.577$$

$$\frac{\sqrt{2}}{2} \approx 0.707$$

$$\frac{\sqrt{3}}{2} \approx 0.806$$

Chapter 11.4: Trigonometric Ratios of General Angles

The acute angle formed when a line rotates about the origin is called the **basic angle**, denoted by α . Always make the basic angle positive.

1 st Quadrant	2 nd Quadrant	3 rd Quadrant	4 th Quadrant
$\alpha = \theta$	$\alpha = 180^{\circ} - \theta$	$\alpha = 180^{\circ} + \theta$	$\alpha = 360^{\circ} - \theta$
$\alpha = 0$	$\alpha = \pi - \theta$	$\alpha = \pi + \theta$	$\alpha = 2\pi - \theta$

Chapter 11.6: Trigonometric Ratios of Negative Angles

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

<u>Chapter 11.5: Trigonometric Ratios of their General Angles and their Signs</u>

In the 1st quadrant, all 3 are positive.

In the 2nd quadrant, only tangent is positive.

In the 3rd quadrant, only sine is positive.

In the 4th quadrant, only cosine is positive.

If still turning anticlockwise after 4^{th} quad, add $360^{\circ} or~2\pi$.

Chapter 11.7: Solving Basic Trigonometric Equations

- 1.) By considering the sign of k, identify the possible quadrants where theta will lie.
- 2.) Find the basic angle alpha, the acute angle from e.g.: $\sin \theta = |k|$
- 3.) Find all the possible values of theta in the given interval.

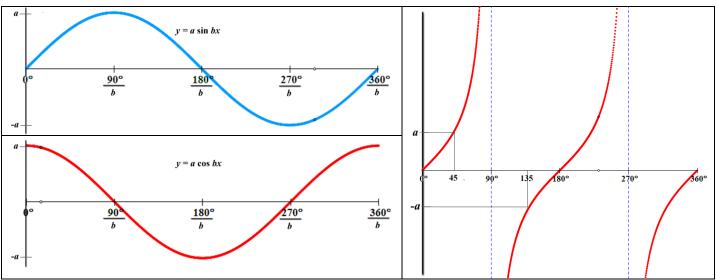
Chapter 11.8: Graphs of the sine, cosine and tangent functions

In general, the curves $y = a \sin bx + c$ and $y = a \cos bx + c$ have axis y = c, amplitude a and period $\frac{360^{\circ} \text{ or } 2\pi}{b}$

Graphs are shown on the next page.

www.studgyuide.pk

OALEVELNOTES.COM



Chapter 12.1: Summary of Identities

